Sin título
- 1996
- 215-223
Bacterial nutrition of great scallop, Pecten moximus, larvae was investigated using the radioactive tracer technique. The bacterial labelling was studied initially to obtain a high and stable specific radioactivity (14C) of bacterial cells. A higher bacterial specific 14C activity was obtained when the tracer (amino acid) was introduced in the culture medium at the beginning of the exponential growth phase. After a 12 h labelling period in a rich nutritive medium, the bacteria were depurated in seawater for 5 h (chase) to prevent further 14C excretion and then added to larval rearing vessels. The larval labelling was followed for 12 h and then larvae were placed in new vessels without radioactive bacteria. The depuration of larvae was followed for 3 days. Data obtained on ingestion and assimilation efficiency show that bivalve larvae are able to ingest and digest bacteria.
Pecten maximus
vieira
Bacteria
Nutrition
Great Scallop
larvae
Tracer technique
Bacterial nutrition of great scallop, Pecten moximus, larvae was investigated using the radioactive tracer technique. The bacterial labelling was studied initially to obtain a high and stable specific radioactivity (14C) of bacterial cells. A higher bacterial specific 14C activity was obtained when the tracer (amino acid) was introduced in the culture medium at the beginning of the exponential growth phase. After a 12 h labelling period in a rich nutritive medium, the bacteria were depurated in seawater for 5 h (chase) to prevent further 14C excretion and then added to larval rearing vessels. The larval labelling was followed for 12 h and then larvae were placed in new vessels without radioactive bacteria. The depuration of larvae was followed for 3 days. Data obtained on ingestion and assimilation efficiency show that bivalve larvae are able to ingest and digest bacteria.
Pecten maximus
vieira
Bacteria
Nutrition
Great Scallop
larvae
Tracer technique